Lecture 3:
Inference in Simple Linear Regression

BMTRY 701
Biostatistical Methods I



Interpretation of the SLR model

= Assumed model:

E(Y) ::80 ""/BlX

» Estimated regression model: Takes the form of
a line.

Y:,Bo"'ﬁlX
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Predicted Values

* For a given individual with covariate X

Yi — :Bo T ﬂlXi
= This is the fitted value for the ith individual

» The fitted values fall on the regression line.



SENIC data
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SENIC Data

> plot (dataSBEDS, dataSLOS, xlab="Number of Beds",
yvlab="Length of Stay (days)", pch=16)

> reg <- Im(data$LOS~ dataSBEDS)

> abline (reg, lwd=2)

> yhat <- reg$fitted.values

> points (data$SBEDS, vyhat, pch=16, col=3)

> reg

Call:
Im(formula = data$SLOS ~ dataSBEDS)

Coefficients:
(Intercept) data$BEDS
8.625364 0.004057



Estimating Fitted Values

= For a hospital with 200 beds, we can calculate
the fitted value as

8.625 + 0.00406*200 = 9.44

= For a hospital with 750 beds, the estimated fitted
value is

8.625 + 0.00406*750 = 11.67



Residuals

= The difference between observed and fitted
» |ndividual-specific
» Recall that E(g;) =0




SENIC data
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R code

» Residuals and fitted values are in the regression object

# show what is stored in ‘reg’
attributes (reqg)

# show what is stored in ‘summary (reg)’
attributes (summary (req))

# obtain the regression coefficients
regScoefficients

# obtain regression coefficients, and other info
# pertaining to regression coefficients
summary (reqg) Scoefficients

# obtain fitted wvalues
regSfitted.values

# obtain residuals

regSresiduals

# estimate mean of the residuals

mean (regSresiduals)



Making pretty pictures

= You should plot your regression line!

= |t will help you ‘diagnose’ your model for
potential problems

plot (data$BEDS, data$L0OS, xlab="Number of Beds",
yvlab="Length of Stay (days)",pch=16)

reg <- 1lm(data$LOS~ dataSBEDS)

abline (reg, 1lwd=2)



A few properties of the regression line to note

= Sum of residuals =0

* The sum of squared residuals is minimized
(recall least squares)

= The sum of fitted values = sum of observed
values

= The regression line always goes through the
mean of X and the mean of Y



Estimating the variance

= Recall another parameter: o2
= |t represents the variance of the residuals

= Recall what we know about estimating variances
for a variable from a single population:

> (1~ 7)’

¢ =

n—1

= \What would this look like for a corresponding
regression model?



Residual variance estimation

= “sum of squares”

= for residual sum of squares:
 RSS = residual sum of squares

« SSE = sum of squares of errors (or error sum of
squares)

S

SSE=Y(4, -8 =82 =3 (v, -7
i=l1

I I
i=1 i=l1




Residual variance estimation

= WWhat do we divide by?
In single population estimation, why do we

divide by n-1?
p DTS X
6> =5 = MSE = :’1 =
n—2 n—2 n—2
Why n-27?

MSE = mean square error

RSE = residual standard error = sqrt(MSE)




Normal Error Regression

= New: assumption about the distribution of the
residuals

g ~N(0,0%)

» Also assumes independence (which we had
before).

= Often we say they are ‘iid”: “independent and
identically distributed”



How is this different?

= \We have now added “probability” to our model

= This allows another estimation approach:
Maximum Likelihood

= We estimate the parameters (5, 5, ¢°) using this
approach instead of least squares

= Recall least squares: we minimized Q
= ML: we maximize the likelihood function



The likelihood function for SLR

= Taking a step back
= Recall the pdf of the normal distribution

2
] . (xi B ,ll)
V270 eXp[ 202 j

fpu,0%) =

* This is the probability density function for a
random variable X.

= For a ‘standard normal’ with mean 0 and
variance 1:

2
X

fypu=0,0"=l)=—e ’




Standard Normal Curve
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The likelihood function for a normal variable

* From the pdf, we can write down the likelihood
function

pdf : f(x;pu,0%) =

(x, — 1)°
1 . I
V27o? exp[ 20-2

* The likelihood is the product over n of the pdfs:

L(p,o’ [x)=]]
i=1

(x;, —1)°
1 . I
V270 eXp( 202




The likelihood function for a SLR

= \What is “normal” for us?

= the residuals
 what is E(g) = n?

L(u,0° | x) = H

20a? exp(

2
&,

20

3




Maximizing it

= \WWe need to maximize ‘with respect to’ the
parameters.

= But, our likelihood is not written in terms of our
parameters (at least not all of them).

E

2
1 G
V276t eXPL 202 ]

Lo [x) =] ]
i=l1




Maximizing it

= now what do we do with it?

= it is well known that maximizing a function can
be achieved by maximizing it's log. (Why?)

Log(x)

4 -2 0 2




Log-likelihood

L(,U>02|x):ﬁ (K_;Bo_ﬂ1Xi) j

\/271? exp{— 207
(Yz _180 _IBIXi)Zj

20

I(u,0° | x) =log H 102 exp(—
i=1

27




Still maximizing....

= How do we maximize a function, with respect to
several parameters?

= Same way that we minimize:

 we want to find values such that the first derivatives
are zero (recall slope=0)

* take derivatives with respect to each parameter (i.e.,
partial derivatives)

« set each partial derivative to 0
 solve simultaneously for each parameter estimate

» This approach gives you estimates of g, 5;, o°:

By P16




No more math on this....

» For details see MPV, Page 47, section 2.10

= \We call these estimates "maximum likelihood
estimates”

= a.k.a "MLFE”

= The results:
* MLE for B, is the same as the estimate via least
squares

* MLE for B, is the same as the estimate via least
squares

 MLE for 6% is the same as the estimate via least
squares



So what is the point?!

* Linear regression is a special case of regression

= for linear regression Least Squares and ML approaches
give same results

» For later regression models (e.g., logistic, poisson), they
differ in their estimates

* Going back to LS estimates

« what assumption did we make about the distribution of the
residuals?

* LS has fewer assumptions than ML

= Going forward: We assume normal error regression
model



The main interest: f3,

* The slope is the focus of inferences

= Why? If B, =0, then there is no linear
association between x and y

= But, there is more than that:
* it also implies no relation of ANY type

* this is due to assumptions of

o o
= constant variance = ‘%%
» equal meansif ;=0

» Extreme example: -




Inferences about f3,

= To make inferences about 3;, we need to
understand its sampling distribution

/Bl ~ N(/Bpo-z (/él))

= More detalls:
* The expected value of the estimate of the slope is the

true slope .
E(,B1) — 181

* The variance of the sampling distribution for the slope

IS 2

2/ HN o)
o (ﬂl)_Z(Xi_y)z




Inferences about f3,

= More details (continued)

* Normality stems from the knowledge that the
slope estimate is a linear combination of the Y’s

 Recall:

= Yi are independent and normally distributed (because
residuals are normally distributed)

= The sum of normally distributed random variables is normal

» Also, a linear combination of normally distributed random
variabes is normal.

* (what is a linear combination?)



So much theory! Why?

= \We need to be able to make inferences about
the slope

» |f the sampling distribution is normal, we can
standardize to a standard normal:

1[3)1 ~ N(ﬁ1902 (1[3)1))

ﬂl ﬂl N(O 1)
0(181)




Implications

= Based on the test statistic on previous slide, we
can evaluate the “statistical significance” of our

slope.
» To test that the slope is O:

H,:p5 =0
H, :B #0

= TJest statistic:

B
/ = — ~ N(0,]1)
o(f,) (




But, there is a problem with that....

B
/ = — ~ N(0,1
o(f) (O

Do we know what the true variance is?

2
O

(Xi _)?)2

= Recall

o’ (B) = 5

which depends on the true SD of the residuals



But, we have the tools to deal with this

» What do we do when we have a normally distributed
variable but we do not know the true variance?

= Two things:

* we estimate the variance using the “sample” variance

= |n this case, we use our estimated MSE

= we plug it into our estimate of the variance of the slope
estimate

A2 D . 6-2
O'(/Bl)_Z(Xi_)?)z

 we use a t-test instead of a Z-test.

p
t*=—"——~1t ,

5B "




The t-test for the slope

* Why n-2 degrees of freedom?

= The ratio of the estimate of the slope and its
standard error has a t-distribution

1* = P ~t
AN n—2
o(f))

= For more detalls, page 22, section 2.3.




What about the intercept?

= ditto
= All the above holds

% ﬁO
"= A, D Ntn—Z
o(p,)

= However, we rarely test the intercept




Time for data (phewf!) i
s Number of Beds .
associated § -
with Length of Stay? 5 e
> reg <- 1m(data$LOS ~ dataSBEDS) | | | |
> summary (reqg) 0 200 400 600 800
Number of Beds

Coefficients:
Estimate Std. Error t wvalue Pr(>]|t])

(Intercept) 8.6253643 0.2720589 31.704 < 2e-16 ***

dataS$BEDS 0.0040566 0.0008584 4.726 6.77e-06 ***

Signif. codes: 0 Y***’ (0,001 “**’ (0.01 '** 0.05 ‘. 0.1 Y " 1

Residual standard error: 1.752 on 111 degrees of freedom
Multiple R-Squared: 0.1675, Adjusted R-squared: 0.16
F-statistic: 22.33 on 1 and 111 DF, p-value: 6.765e-06



Important R commands

= 1m: fits a linear regression model
 for simple linear regression, syntax is
reg <- Ilm(y ~ X)
* more covariates can be added:
reg <- 1Im(y ~ x1+x2+x3)
" abline: adds aregression line to an already
existing plot if object is a regression object
» syntax: abline (reg)
= Extracting results from regression objects:
* residuals: regSresiduals
= fitted values: regSfitted.values



